Saturday, May 4, 2013

STIRLING ENGINE-Low power generation design hot air engine

                      

 

                 A Stirling engine is a heat engine operating by cyclic compression and expansion of air or other gas, the working fluid, at different temperature levels such that there is a net conversion of heat energy to mechanical work.Or more specifically, a closed-cycle regenerative heat engine with a permanently gaseous working fluid, where closed-cycle is defined as a thermodynamic system in which the working fluid is permanently contained within the system, and regenerative describes the use of a specific type of internal heat exchanger and thermal store, known as the regenerator. It is the inclusion of a regenerator that differentiates the Stirling engine from other closed cycle hot air engines.
The Stirling engine is noted for its high efficiency compared to steam engines,quiet operation, and the ease with which it can use almost any heat source. This compatibility with alternative and renewable energy sources has become increasingly significant as the price of conventional fuels rises, and also in light of concerns such as peak oil and climate change. This engine is currently exciting interest as the core component of micro combined heat and power (CHP) units, in which it is more efficient and safer than a comparable steam engine
Like the steam engine, the Stirling engine is traditionally classified as an external combustion engine, as all heat transfers to and from the working fluid take place through a solid boundary (heat exchanger) thus isolating the combustion process and any contaminants it may produce from the working parts of the engine. This contrasts with an internal combustion engine where heat input is by combustion of a fuel within the body of the working fluid.

Key components

Heat source

The heat source may be provided by the combustion of a fuel and, since the combustion products do not mix with the working fluid and hence do not come into contact with the internal parts of the engine, a Stirling engine can run on fuels that would damage other types of engines' internals, such as landfill gas which contains siloxane.

In small, low power engines this may simply consist of the walls of the hot space(s) but where larger powers are required a greater surface area is needed in order to transfer sufficient heat. Typical implementations are internal and external fins or multiple small bore tubes.

Designing Stirling engine heat exchangers is a balance between high heat transfer with low viscous pumping losses and low dead space (unswept internal volume). With engines operating at high powers and pressures, the heat exchangers on the hot side must be made of alloys that retain considerable strength at temperature and that will also not corrode or creep.

Heat sink


The heat sink is typically the environment at ambient temperature. In the case of medium to high power engines, a radiator is required to transfer the heat from the engine to the ambient air. Marine engines can use the ambient water. In the case of combined heat and power systems, the engine's cooling water is used directly or indirectly for heating purposes.

Alternatively, heat may be supplied at ambient temperature and the heat sink maintained at a lower temperature by such means as cryogenic fluid (see Liquid nitrogen economy) or iced water.

Displacer


The displacer is a special-purpose piston, used in Beta and Gamma type Stirling engines, to move the working gas back and forth between the hot and cold heat exchangers. Depending on the type of engine design, the displacer may or may not be sealed to the cylinder, i.e. it may be a loose fit within the cylinder, allowing the working gas to pass around it as it moves to occupy the part of the cylinder beyond.

Configurations

There are two major types of Stirling engines, that are distinguished by the way they move the air between the hot and cold sides of the cylinder:

    The two piston alpha type design has pistons in independent cylinders, and gas is driven between the hot and cold spaces.
    The displacement type Stirling engines, known as beta and gamma types, use an insulated mechanical displacer to push the working gas between the hot and cold sides of the cylinder. The displacer is large enough to insulate the hot and cold sides of the cylinder thermally and to displace a large quantity of gas. It must have enough of a gap between the displacer and the cylinder wall to allow gas to flow around the displacer easily.
Alpha type Stirling engine. There are two cylinders. The expansion cylinder (red) is maintained at a high temperature while the compression cylinder (blue) is cooled. The passage between the two cylinders contains the regenerator.

Beta Type Stirling Engine. There is only one cylinder, hot at one end and cold at the other. A loose fitting displacer shunts the air between the hot and cold ends of the cylinder. A power piston at the end of the cylinder drives the flywheel.


.

Alpha Stirling


An alpha Stirling contains two power pistons in separate cylinders, one hot and one cold. The hot cylinder is situated inside the high temperature heat exchanger and the cold cylinder is situated inside the low temperature heat exchanger. This type of engine has a high power-to-volume ratio but has technical problems due to the usually high temperature of the hot piston and the durability of its seals. In practice, this piston usually carries a large insulating head to move the seals away from the hot zone at the expense of some additional dead space.
Action of an alpha type Stirling engine

The following diagrams do not show internal heat exchangers in the compression and expansion spaces, which are needed to produce power. A regenerator would be placed in the pipe connecting the two cylinders. The crankshaft has also been omitted.

  BETA STIRLING


A beta Stirling has a single power piston arranged within the same cylinder on the same shaft as a displacer piston. The displacer piston is a loose fit and does not extract any power from the expanding gas but only serves to shuttle the working gas between the hot and cold heat exchangers. When the working gas is pushed to the hot end of the cylinder it expands and pushes the power piston. When it is pushed to the cold end of the cylinder it contracts and the momentum of the machine, usually enhanced by a flywheel, pushes the power piston the other way to compress the gas. Unlike the alpha type, the beta type avoids the technical problems of hot moving seals.Action of a beta type Stirling engine

Again, the following diagrams do not show internal heat exchangers or a regenerator, which would be placed in the gas path around the displacer.

  GAMMA STIRLING

A gamma Stirling is simply a beta Stirling in which the power piston is mounted in a separate cylinder alongside the displacer piston cylinder, but is still connected to the same flywheel. The gas in the two cylinders can flow freely between them and remains a single body. This configuration produces a lower compression ratio but is mechanically simpler and often used in multi-cylinder Stirling engines.


Other Stirling configurations continue to interest engineers and inventors.
    The power piston is pushed outwards by the expanding gas thus doing work. Gravity plays no role in the cycle.
    The gas volume in the engine increases and therefore the pressure reduces, which will cause a pressure difference across the displacer rod to force the displacer towards the hot end. When the displacer moves the piston is almost stationary and therefore the gas volume is almost constant. This step results in the constant volume cooling process which reduces the pressure of the gas.
    The reduced pressure now arrests the outward motion of the piston and it begins to accelerate towards the hot end again and by its own inertia, compresses the now cold gas which is mainly in the cold space.
    As the pressure increases, a point is reached where the pressure differential across the displacer rod becomes large enough to begin to push the displacer rod (and therefore also the displacer) towards the piston and thereby collapsing the cold space and transferring the cold, compressed gas towards the hot side in an almost constant volume process. As the gas arrives in the hot side the pressure increases and begins to move the piston outwards to initiate the expansion step as explained in (1).

Theory


A pressure/volume graph of the idealized Stirling cycle
 The idealised Stirling cycle consists of four thermodynamic processes acting on the working fluid:

   1 Isothermal Expansion. The expansion-space and associated heat exchanger are maintained at a constant high temperature, and the gas undergoes near-isothermal expansion absorbing heat from the hot source.
    2Constant-Volume (known as isovolumetric or isochoric) heat-removal. The gas is passed through the regenerator, where it cools, transferring heat to the regenerator for use in the next cycle.
    3Isothermal Compression. The compression space and associated heat exchanger are maintained at a constant low temperature so the gas undergoes near-isothermal compression rejecting heat to the cold sink
    4Constant-Volume (known as isovolumetric or isochoric) heat-addition. The gas passes back through the regenerator where it recovers much of the heat transferred in 2, heating up on its way to the expansion space.
Theoretical thermal efficiency equals that of the hypothetical Carnot cycle - i.e. the highest efficiency attainable by any heat engine. However, though it is useful for illustrating general principles, the text book cycle is a long way from representing what is actually going on inside a practical Stirling engine and should only be regarded as a starting point for analysis. In fact it has been argued that its indiscriminate use in many standard books on engineering thermodynamics has done a disservice to the study of Stirling engines in general.
The ideal Stirling cycle is unattainable in the real world, and the actual Stirling cycle is inherently less efficient than the Otto cycle of internal combustion engines. The efficiency of Stirling machines is linked to the environmental temperature; a higher efficiency is obtained when the weather is cooler, thus making this type of engine less interesting in places with warmer climates. As with other external combustion engines, Stirling engines can use heat sources other than from combustion of fuels.The maximum theoretical efficiency is equivalent to the Carnot cycle, however the efficiency of real engines is less than this value due to friction and other losses.



Comparison with internal combustion engines


In contrast to internal combustion engines, Stirling engines have the potential to use renewable heat sources more easily, to be quieter, and to be more reliable with lower maintenance. They are preferred for applications that value these unique advantages, particularly if the cost per unit energy generated is more important than the capital cost per unit power. On this basis, Stirling engines are cost competitive up to about 100 kW.

Compared to an internal combustion engine of the same power rating, Stirling engines currently have a higher capital cost and are usually larger and heavier. However, they are more efficient than most internal combustion engines. Their lower maintenance requirements make the overall energy cost comparable. The thermal efficiency is also comparable (for small engines), ranging from 15% to 30%. For applications such as micro-CHP, a Stirling engine is often preferable to an internal combustion engine. Other applications include water pumping, astronautics, and electrical generation from plentiful energy sources that are incompatible with the internal combustion engine, such as solar energy, and biomass such as agricultural waste and other waste such as domestic refuse.

Advantages


    Stirling engines can run directly on any available heat source, not just one produced by combustion, so they can run on heat from solar, geothermal, biological, nuclear sources or waste heat from industrial processes.
    Some types of Stirling engines have the bearings and seals on the cool side of the engine, where they require less lubricant and last longer than equivalents on other reciprocating engine types.
    The engine mechanisms are in some ways simpler than other reciprocating engine types. No valves are needed, and the burner system can be relatively simple. Crude Stirling engines can be made using common household materials.
      A Stirling engine used for pumping water can be configured so that the water cools the compression space. This is most effective when pumping cold water.
    They are extremely flexible. They can be used as CHP (combined heat and power) in the winter and as coolers in summer.
    Waste heat is easily harvested (compared to waste heat from an internal combustion engine) making Stirling engines useful for dual-output heat and power systems.

Disadvantages

Size and cost issues


    Stirling engine designs require heat exchangers for heat input and for heat output, and these must contain the pressure of the working fluid, where the pressure is proportional to the engine power output. In addition, the expansion-side heat exchanger is often at very high temperature, so the materials must resist the corrosive effects of the heat source, and have low creep. Typically these material requirements substantially increase the cost of the engine. The materials and assembly costs for a high temperature heat exchanger typically accounts for 40% of the total engine cost.
     Dissipation of waste heat is especially complicated because the coolant temperature is kept as low as possible to maximize thermal efficiency. This increases the size of the radiators, which can make packaging difficult. Along with materials cost, this has been one of the factors limiting the adoption of Stirling engines as automotive prime movers. For other applications such as ship propulsion and stationary microgeneration systems using combined heat and power (CHP) high power density is not required.

Power and torque issues


       A Stirling engine cannot start instantly; it literally needs to "warm up". This is true of all external combustion engines, but the warm up time may be longer for Stirlings than for others of this type such as steam engines. Stirling engines are best used as constant speed engines.
    Power output of a Stirling tends to be constant and to adjust it can sometimes require careful design and additional mechanisms. Typically, changes in output are achieved by varying the displacement of the engine (often through use of a swashplate crankshaft arrangement), or by changing the quantity of working fluid, or by altering the piston/displacer phase angle, or in some cases simply by altering the engine load. This property is less of a drawback in hybrid electric propulsion or "base load" utility generation where constant power output is actually desirable.

Gas choice issues

The gas used should have a low heat capacity, so that a given amount of transferred heat leads to a large increase in pressure. Considering this issue, helium would be the best gas because of its very low heat capacity. Air is a viable working fluid,but the oxygen in a highly pressurized air engine can cause fatal accidents caused by lubricating oil explosions.   
             Hydrogen's low viscosity and high thermal conductivity make it the most powerful working gas, primarily because the engine can run faster than with other gases. However, due to hydrogen absorption, and given the high diffusion rate associated with this low molecular weight gas, particularly at high temperatures, H2 will leak through the solid metal of the heater. Diffusion through carbon steel is too high to be practical, but may be acceptably low for metals such as aluminum, or even stainless steel. Certain ceramics also greatly reduce diffusion. Hermetic pressure vessel seals are necessary to maintain pressure inside the engine without replacement of lost gas. For high temperature differential (HTD) engines, auxiliary systems may need to be added to maintain high pressure working fluid. These systems can be a gas storage bottle or a gas generator. Hydrogen can be generated by electrolysis of water, the action of steam on red hot carbon-based fuel, by gasification of hydrocarbon fuel, or by the reaction of acid on metal. Hydrogen can also cause the embrittlement of metals. Hydrogen is a flammable gas, which is a safety concern if released from the engine.
    Most technically advanced Stirling engines, like those developed for United States government labs, use helium as the working gas, because it functions close to the efficiency and power density of hydrogen with fewer of the material containment issues. Helium is inert, and hence not flammable. Helium is relatively expensive, and must be supplied as bottled gas. One test showed hydrogen to be 5% (absolute) more efficient than helium (24% relatively) in the GPU-3 Stirling engine. The researcher Allan Organ demonstrated that a well-designed air engine is theoretically just as efficient as a helium or hydrogen engine, but helium and hydrogen engines are several times more powerful per unit volume.
    Some engines use air or nitrogen as the working fluid. These gases have much lower power density (which increases engine costs), but they are more convenient to use and they minimize the problems of gas containment and supply (which decreases costs). The use of compressed air in contact with flammable materials or substances such as lubricating oil introduces an explosion hazard, because compressed air contains a high partial pressure of oxygen. However, oxygen can be removed from air through an oxidation reaction or bottled nitrogen can be used, which is nearly inert and very safe.
    Other possible lighter-than-air gases include: methane, and ammonia.

Applications

Applications of the Stirling engine range from heating and cooling to underwater power systems. A Stirling engine can function in reverse as a heat pump for heating or cooling. Other uses include: combined heat and power, solar power generation, Stirling cryocoolers, heat pump, marine engines, and low temperature difference engines
Ventilation fans, low power generators, economisers. etc..

Alternatives

Alternative thermal energy harvesting devices include the Thermogenerator. Thermogenerators allow less efficient conversion (5-10%) but may be useful in situations where the end product needs to be electricity and where a small conversion device is a critical factor.